Add Row
Add Element
cropper
update
EDGE TECH BRIEF
update
Add Element
  • Home
  • Categories
    • 1. Future Forecasts Predictive insights
    • market signals
    • generative AI in R&D
    • climate
    • biotech
    • R&D platforms
    • innovation management tools
    • Highlights On National Tech
    • AI Research Watch
    • Technology
September 29.2025
3 Minutes Read

How Agentic AI is Shaping the Future of Autonomous Networks

AI for Networking with a smiling man and network diagrams.

The Future of Autonomous Networks: Understanding Agentic AI

In today's fast-paced digital environment, organizations worldwide are racing toward the dream of autonomous networks. These self-sufficient networks are designed to manage themselves, addressing the increasing complexity and volume of data without constant human intervention. However, while automation and artificial intelligence (AI) have made strides in networking, true autonomy remains on the horizon. Yet the question arises: how can agentic AI facilitate this transition?

In 'AI for Networking: Agentic AI Powering Intelligent Automation', the discussion dives into the evolution of network operations with AI, exploring key insights that sparked deeper analysis on our end.

Untangling the 'Signal vs. Noise' Dilemma

The concept of 'signal versus noise' captures a pivotal issue in network management. Imagine a Network Operations Center swamped in alerts and notifications, where effective communication is often lost in the chaos. Many alerts, devoid of critical relevance, overwhelm network teams and lead to alarm fatigue. Research shows that upwards of 80% of alerts can be false positives, which creates noise that masks real, urgent issues that need timely attention. Agentic AI tackles this challenge by providing clarity. It filters through this noise, enabling teams to focus on alerts that matter while simultaneously improving their ability to discern genuine threats.

Data Volume: A Double-Edged Sword

The sheer volume and complexity of data generated today presents another significant hurdle. IT networks create an immense amount of telemetry data that is often siloed across different domains. This fragmentation makes it difficult for network teams to conduct cross-domain analysis, delaying response times. Agentic AI offers a strategic solution by introducing a holistic approach to network analysis. By synthesizing data from various sources, it enables more accurate and proactive network management, ultimately leading to better decision-making.

Breaking Down Day Zero, Day One, and Day Two AI

Understanding the day zero, day one, and day two framework is essential for grasping how agentic AI can optimize network operations. Day Zero focuses on planning and designing the network, while Day One emphasizes the actual deployment of services. Through historical analyses and pattern recognition, agentic AI can optimize network designs before any purchase is made, ensuring cost-effective operations down the line. The most substantial improvements occur during Day Two when actual network operations leverage agentic AI for high-fidelity anomaly detection. This phase marks the true entry point for AI in network operations, refining performance and enhancing operational agility.

The Feedback Loop: Continuous Learning and Improvement

One of the most exciting aspects of integrating AI into networking is the feedback loop created between these phases. Data generated in Day Two can inform Day Zero and Day One decisions, allowing networks to learn and adapt autonomously over time. This continuous learning mechanism ensures that networks not only respond better but also improve their operational resiliency with each incident. As organizations refine their data practices, they can build increasingly autonomous networks that tackle challenges preemptively, transforming potential outages into manageable tasks.

The Promise of Network Autonomy

The goal of creating a truly autonomous network remains ahead, but the potential is undeniable. Organizations can eventually express priorities such as minimizing latency or ensuring traffic stability while the network seamlessly makes those adjustments independently. As we explore the future of networking, we can expect AI-driven systems that enhance efficiency and reduce the burden on human teams, allowing them to concentrate on strategic growth efforts.

As the conversation about AI for networking expands, it's clear that we're entering a transformative period in technological innovation. The path to autonomous networks equipped with agentic AI is not just imperative for efficiency; it is essential for navigating the intricate challenges that lie ahead in our data-saturated world. Let’s deepen our understanding of how to harness these advancements for the future of deep technology.

1. Future Forecasts Predictive insights

26 Views

0 Comments

Write A Comment

*
*
Related Posts All Posts
01.17.2026

Unpacking Why Insider Threats Cost More and How to Combat Them

Update Understanding Insider Threats: A Growing Concern In the ever-evolving landscape of cybersecurity, insider threats have emerged as a predominant and costly issue for organizations. Unlike external cyberattacks, insider threats stem from current or former employees, contractors, or business partners who have insider knowledge of an organization's systems and data. The consequences of such threats can range from data breaches to significant financial losses, making it imperative for companies to understand and mitigate these risks.In the video Why Insider Threats Cost More, the overarching theme of the financial implications of insider threats is examined, prompting us to delve deeper into this critical issue. The Financial Impact of Insider Threats Recent studies highlight alarming statistics regarding the financial toll of insider threats. On average, the cost of these incidents exceeds that of external breaches, often due to the sophisticated nature of insider attacks and the lasting damage to an organization’s reputation. The expenses associated with insider threats often include remediation costs, legal fees, and lost revenue, not to mention the potential loss of customer trust. Identifying Risk Factors and Preventative Measures To combat insider threats effectively, organizations must first identify common risk factors. High-risk indicators include employees in sensitive positions, those experiencing job dissatisfaction, or those with financial troubles. By using predictive analytics and comprehensive monitoring tools, businesses can assess potential threats and take proactive measures to safeguard their data. Technological Innovations in Mitigating Risks Advancements in technology play a crucial role in defending against insider threats. Tools leveraging artificial intelligence and machine learning can analyze user behavior and identify anomalies that may signify malicious intent. By implementing these innovations, organizations can enhance their security frameworks and reduce vulnerability to insider attacks. Future Forecasts and Preparedness Looking forward, it is clear that the threat landscape will continue to evolve. As the workforce increasingly adopts remote and hybrid models, organizations must stay vigilant against insider threats. Predictive insights suggest that as technology becomes more intertwined with daily operations, understanding and mitigating insider risks will be key for business resilience. Companies will benefit from investing in robust cybersecurity programs and continuous employee training to foster a culture of security awareness. Empowering Employees to be Part of the Solution While the risk of insider threats is significant, companies can leverage their own employees as an asset in combating these dangers. Creating an environment of transparency and trust encourages employees to speak up about suspicious activities or concerns, ultimately fortifying organizational security. In summary, the discussion spurred by the video Why Insider Threats Cost More provides essential insights into a topic that demands urgent attention from all sectors. Organizations must adopt a proactive stance, leveraging technology and employee engagement to mitigate the risks posed by insiders while also preparing for the future landscape of cybersecurity.

01.16.2026

State Space Models: The Future of Generative AI and Innovation in Technology

Update Understanding State Space Models in AI State Space Models (SSMs) are revolutionizing the way we approach artificial intelligence and machine learning. Unlike traditional methods, SSMs offer a framework that is not only efficient but also capable of handling complexity across various dimensions—time, memory, and performance.In 'What are State Space Models? Redefining AI & Machine Learning with Data,' the discussion dives into how SSMs outperform traditional methods, exploring key insights that sparked deeper analysis on our end. Why State Space Models are Game-Changers In a rapidly evolving tech landscape, where data is generated at an unprecedented pace, there's a growing demand for models that can efficiently process this information. SSMs have showcased their superiority over transformers, especially in scenarios requiring the management of sequential data. This efficiency stems from their ability to represent the data using state variables, thereby enhancing memory management and scalability. Transforming Generative AI with SSMs Generative AI has taken the tech world by storm, but it comes with its challenges—especially in terms of performance under heavy loads. SSMs significantly improve generative AI's efficiency, allowing for more sophisticated applications and reducing computational demands. This makes them an invaluable asset in both research and practical implementations. Real-World Applications and Future Trends SSMs are not just theoretical models; they are making waves across numerous sectors, from deep-tech startups aiming for breakthroughs in biotechnology to academic researchers looking to push the boundaries of intelligent systems. Their capability to evolve with incoming data positions them as the harbinger of the next wave of AI advancements. Counterarguments and Diverse Perspectives While many herald SSMs as the future of AI, it's important to consider counterarguments. Some experts still advocate for transformers, citing their dominant performance in many tasks. The discussion should be balanced, weighing the benefits of SSMs against established models to make informed decisions. Embracing These Technologies for Innovation For innovation officers and policy analysts, understanding the implications of SSMs is crucial. These models offer not just a technical advantage but also a strategic one, providing insights that can lead to impactful innovations across industries.

01.15.2026

Navigating the Complex Landscape of Ransomware and AI Threats in 2026

Update The Persistent Threat of Ransomware As we step into 2026, the battle against ransomware shows no signs of abating. Despite significant achievements by law enforcement against major ransomware groups such as LockBit, RansomHub, and BlackSuit, incidents of ransomware attacks continue to plague organizations worldwide. In recent discussions on a Security Intelligence podcast featuring experts like JR Rao and Michelle Alavarez, the complexities surrounding ransomware were highlighted. While arrests and takedowns make headlines, the underlying reasons that fuel these digital extortion campaigns remain unaddressed. Organizations must adopt a multi-faceted approach to cybersecurity, incorporating advanced strategies and technologies to combat these relentless threats.In 'Ransomware whack-a-mole, AI agents as insider threats, and how to hack a humanoid robot', the discussion dives into the current landscape of cybersecurity challenges, exploring key insights that sparked deeper analysis on our end. Zestix and the Evolution of Cybersecurity Threats Another topic of concern is the alarming case of Zestix, an individual threat actor allegedly responsible for breaches affecting fifty global enterprises. This case serves as a stark reminder of how a single compromised password can lead to extensive breaches. It emphasizes the need for businesses to reconsider their identity security measures and enhance their protection against insider threats, which can often stem from careless password practices. Implementing strong authentication techniques, such as multi-factor authentication, can drastically reduce the risks posed by insider threats like Zestix. The Rise of AI Agents as Insider Threats The conversation then shifts to the potential dangers posed by AI agents as emerging insider threats. Wendi Whitmore from Palo Alto raised compelling points regarding how these agents could inadvertently become tools for malicious actors or even engage in harmful behaviors themselves. As companies increasingly rely on AI to enhance their productivity and efficiency, it is crucial for organizations to understand and manage the inherent risks. Developing protocols and guidelines for AI use can help prevent unintended consequences that could compromise system integrity. Hacking Humanoid Robots: A Glimpse into Future Threats Moreover, the podcast discussed a striking demonstration at GEEKCon, where security researchers showcased how voice commands could be exploited to hijack AI-powered humanoid robots. This emerging threat raises concerns about the intersection of operational technology, AI, and robotics. As innovation drives the development of smarter machines, security must be a principal consideration. Organizations in the robotics space should incorporate robust security frameworks that address not only digital vulnerabilities but also physical risks posed by robots that can act autonomously. In light of these discussions, the podcast, Ransomware Whack-a-Mole, AI Agents as Insider Threats and How to Hack a Humanoid Robot, provides crucial insights into the evolving landscape of cybersecurity. It suggests that while technological advancement in AI and robotics can offer unprecedented benefits, they also present new vulnerabilities that must be proactively managed. The rapidly changing tech scene calls for organizations to remain vigilant, adaptable, and thorough in their cybersecurity frameworks.

Terms of Service

Privacy Policy

Core Modal Title

Sorry, no results found

You Might Find These Articles Interesting

T
Please Check Your Email
We Will Be Following Up Shortly
*
*
*